

HIGHLIGHTS OF PRESCRIBING INFORMATION These highlights do not include all the information needed to use GABAPENTIN ORAL SOLUTION safely and effectively. See full prescribing rmation for GABAPENTIN ORAL SOLUTION

-INDICATIONS AND USAGE-

GABAPENTIN oral solution

Initial U.S. Approval: 1993

Gabapentin oral solution is indicated for Postherpetic neuralgia in adults (1) Adjunctive therapy in the treatment of partial onset seizures, with and without secondary generalization, in adults and pediatric patients 3 years and

-- DOSAGE AND ADMINISTRATION-Postherpetic Neuralgia (2.1)

Dose can be titrated up as needed to a dose of 1800 mg/day

- Day 1: Single 300 mg dose Day 2: 600 mg/day (i.e., 300 mg two times a day)
- Day 3: $900 \, \text{mg/day}$ (i.e., $300 \, \text{mg}$ three times a day)
- Epilepsy with Partial Onset Seizures (2.2)
- Patients 12 years of age and older: starting dose is 300 mg three times daily; may be titrated up to 600 mg three times daily Patients 3 to 11 years of age: starting dose range is 10 to 15 mg/kg/day, given in three divided doses; recommended dose in patients 3 to 4
- years of age is 40 mg/kg/day, given in three divided doses; the recommended dose in patients 5 to 11 years of age is 25 to 35 mg/kg/day, given in three divided doses. The recommended dose is reached by upward titration over a period of approximately 3 days Dose should be adjusted in patients with reduced renal function (2.3, 2.4)

...DOSAGE FORMS AND STRENGTHS Oral Solution: 250 mg/5mL (3)

-CONTRAINDICATIONS- $Known\,hypersensitivity\,to\,gab apentin\,or\,its\,ing redients\,(4)$

INDICATIONS AND USAGE

DOSAGE AND ADMINISTRATION Dosage for Postherpetic Neuralgia Dosage for Epilepsy with Partial Onset Seizures

Dosage Adjustment in Patients with Renal Impairmen 2.4 Dosage in Elderly 2.5 Administration Informa

3 DOSAGE FORMS AND STRENGTHS

4 CONTRAINDICATIONS

WARNINGS AND PRECAUTIONS 5.1 Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS)/Multiorgan Hypersensitivity

Anaphylaxis and Angioedema Effects on Driving and Operating Heavy Machinery 5.4 Somnolence/Sedation and Dizziness

Withdrawal Precipitated Seizure, Status Epilepticus Suicidal Behavior and Ideation Respiratory Depression

Neuropsychiatric Adverse Reactions (Pediatric Patients 3 to 12 Years of Age) 5.9 Tumorigenic Potential5.10 Sudden and Unexplained Death in Patients with Epilepsy

ADVERSE REACTIONS Clinical Trials Experience

6.2 Postmarketing Experience DRUG INTERACTIONS

7.1 Opioids7.2 Other Antiepileptic Drugs

FULL PRESCRIBING INFORMATION INDICATIONS AND USAGE

Management of postherpetic neuralgia in adults Adjunctive therapy in the treatment of partial onset seizures, with and without secondary generalization, in adults and pediatric patients 3

2.1 Dosage for Postherpetic Neuralgia

2 DOSAGE AND ADMINISTRATION

In adults with postherpetic neuralgia, gabapentin oral solution may be initiated on Day 1 as a single 300 mg dose, on Day 2 as 600 mg/day (300 mg two times a day), and on Day 3 as 900 mg/day (300 mg three times a day). The dose can subsequently be titrated up as needed for pain relief to a dose of 1800 mg/day (600 mg three times a day). In clinical studies, efficacy was demonstrated over a range of doses from 1800 mg/day to 3600 mg/day with comparable effects across the dose range; however, in these clinical studies, the additional benefit of using doses greater than 1800 mg/day was not demonstrated.

2.2 Dosage for Epilepsy with Partial Onset Seizures Patients 12 Years of Age and Above

The starting dose is 300 mg three times a day. The recommended maintenance dose of gabagentin oral solution is 300 mg to 600 mg three times a day. Dosages up to 2400 mg/day have been administered in long-term clinical studies. Doses of 3600 mg/day have also been patients for a relatively short duration. The maximum time between doses should not exceed 12 hours.

The starting dose range is 10 mg/kg/day to 15 mg/kg/day, given in three divided doses, and the recommended maintenance dose reached by upward titration over a period of approximately 3 days. The recommended maintenance dose of gabapentin oral solution in patients 3 to 4 years of age is 40 mg/kg/day, given in three divided doses. The recommended maintenance dose of gabapentin oral solution in patients 5 to 11 years of age is 25 mg/kg/day to 35 mg/kg/day, given in three divided doses. Gabapentin oral solution may be administered as the oral solution, capsule, or tablet, or using combin ns. Dosages up to 50 mg/kg/day have been administered in a long-term clinical study. The maximum 2.3 Dosage Adjustment in Patients with Renal Impairment

Dosage adjustment in patients 12 years of age and older with renal impairment or undergoing hemodialysis is recommended, as follows (see dosing TABLE 1. Gabapentin Oral Solution Dosage Based on Renal Function

Creatinine Clearance (mL/min)	Dose Range (mg/day)	Dose Regime (mg)	n			
≥ 60	900 to 3600	300 TID	400 TID	600 TID	800 TID	1200 TID
> 30 to 59	400 to 1400	200 BID	300 BID	400 BID	500 BID	700 BID
> 15 to 29	200 to 700	200 QD	300 QD	400 QD	500 QD	700 QD
15°	100 to 300	100 QD	125 QD	150 QD	200 QD	300 QD
		1	Post-Hemodialysis	Supplemental Do	se (mg) ^b	
Hemodialysis		125 ^b	150 ^b	200 ^b	250 ^b	350 ^b

^b Patients on hemodialysis should receive maintenance doses based on estimates of creatinine clearance as indicated in the upper portion of the table and a sunnlemental nost-hemodialysis dose administered after each 4 hours of hemodialysis as indicated in the lower portion of the table

Creatinine clearance (CLCr) is difficult to measure in outpatients. In patients with stable renal function, creatinine clearance can be reasonably well [140 – age (years)] x weight (kg) (x 0.85 for female patients) CLCr = $\frac{1730 \text{ s.s.}}{72 \text{ x serum creatinine (mg/dL)}}$

The use of gabapentin oral solution in patients less than 12 years of age with compromised renal function has not been studied.

2.4 Dosage in Elderly

Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and dose should be adjusted based on creatinine clearance values in these patients 2.5 Administration Information

Administer gabapentin oral solution orally with or without food

If the gabapentin oral solution dose is reduced, discontinued, or substituted with an alternative medication, this should be done gradually over a minimum o 1 week (a longer period may be needed at the discretion of the prescriber) 3 DOSAGE FORMS AND STRENGTHS

Oral solution
250 mg per 5 mL (50 mg per mL), clear colorless to slightly yellow solution 4 CONTRAINDICATIONS

Gabapentin is contraindicated in patients who have demonstrated hypersensitivity to the drug or its ingredients 5 WARNINGS AND PRECAUTIONS

5.1 Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS)/Multiorgan Hypersensitivity
Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS), also known as multiorgan hypersensitivity, has occurred with gabapentin. Some of these reactions have been fatal or life-threatening. DRESS typically, although not exclusively, presents with fever, rash, and/or lymphadenopathy, in association with other organ system involvement, such as hepatitis, nephritis, hematological abnormalities, myocarditis, or myositis sometimes resembling an acute viral infection. Eosinophilia is often present. This disorder is variable in its expression, and other organ systems not noted here may be involved. It is important to note that early manifestations of hypersensitivity, such as fever or lymphadenopathy, may be present even though rash is not evident. If such signs or symptoms are present, the patient should be evaluated immediately. Gabapentin should be discontinued if an alternative etiology for the signs or symptoms cannot be established

Gabapentin can cause anaphylaxis and angioedema after the first dose or at any time during treatment. Signs and symptoms in reported cases have included difficulty breathing, swelling of the lips, throat, and tongue, and hypotension requiring emergency treatment. Patients should be instructed to discontinue gabapentin and seek immediate medical care should they experience signs or symptoms of anaphylaxis or angioer

Patients taking gabapentin should not drive until they have gained sufficient experience to assess whether gabapentin impairs their ability to drive. Driving performance studies conducted with a prodrug of gabapentin (gabapentin enacarbil tablet, extended-lease) indicate that gabapentin may cause significant driving impairment. Prescribers and patients should be aware that patients' ability to assess their own driving competence, as well as their ability to assess the degree of somnolence caused by gabapentin, can be imperfect. The duration of driving impairment after starting therapy with nentin is unknown. Whether the impairment is related to somnolence (see Warnings and Precautions (5.4/) or other effects of gabapentin is unkn Moreover, because gabapentin causes somnolence and dizziness [see Warnings and Precautions (5.4)], patients should be advised not to operate complex machinery until they have gained sufficient experience on gabapentin to assess whether gabapentin impairs their ability to perform such tasks

5.4 Somnolence/Sedation and Dizziness During the controlled epilepsy trials in patients older than 12 years of age receiving doses of gabapentin up to 1800 mg daily, somnolence, dizziness, and ataxia were reported at a greater rate in patients receiving gabapentin compared to placebo: i.e., 19% in drug versus 9% in placebo for somnolence, 17% in drug versus 7% in placebo for dizziness, and 13% in drug versus 6% in placebo for ataxia. In these trials somnolence, ataxia and fatigue were con adverse reactions leading to discontinuation of gabapentin in patients older than 12 years of age, with 1.2%, 0.8% and 0.6% discontinuing for these events, respectively. During the controlled trials in patients with post-herpetic neuralgia, somnolence, and dizziness were reported at a greater rate compared to placebo in

patients receiving gabapentin, in dosages up to 3600 mg per day: i.e., 21% in gabapentin -treated patients versus 5% in placebo-treated patients for somnolence and 28% in gabapentin -treated patients versus 8% in placebo-treated patients for dizziness. Dizziness and somnolence were among the most common adverse reactions leading to discontinuation of gabapentin. Patients should be carefully observed for signs of central nervous system (CNS) depression, such as somnolence and sedation, when gabapentin is used

with other drugs with sedative properties because of potential synergy. In addition, patients who require concomitant treatment with morphine may

experience increases in gabapentin concentrations and may require dose adjustment (see Drug Interactions (7.1)). 5.5 Withdrawal Precipitated Seizure, Status Epilepticus Antiepileptic drugs should not be abruptly discontinued because of the possibility of increasing seizure frequency.

In the placebo-controlled epilepsy studies in patients > 12 years of age, the incidence of status epilepticus in patients receiving gabapentin was 0.6% (3 of 543) versus 0.5% in patients receiving placebo (2 of 378). Among the 2074 patients > 12 years of age treated with gabapentin across all epilepsy studies (controlled and uncontrolled), 31 (1.5%) had status epilepticus. Of these, 14 patients had no prior history of status epilepticus either before treatment or while on other medications. Because adequate historical data are not available, it is impossible to say whether or not treatment with gabapentin is ated with a higher or lower rate of status epilepticus than would be expected to occur in a similar population not treated with gaba 5.6 Suicidal Behavior and Ideation

Antiepileptic drugs (AEDs), including gabapentin, increase the risk of suicidal thoughts or behavior in patients taking these drugs for any indication. Patients treated with any AED for any indication should be monitored for the emergence or worsening of depression, suicidal thoughts or behavior, and/or any Pooled analyses of 199 placebo-controlled clinical trials (mono- and adjunctive therapy) of 11 different AEDs showed that patients randomized to one of the

AEDs had approximately twice the risk (adjusted Relative Risk 1.8, 95% CI:1,2, 2.7) of suicidal thinking or behavior compared to patients randomized t placebo. In these trials, which had a median treatment duration of 12 weeks, the estimated incidence rate of suicidal behavior or ideation among 27,863 AED-treated patients was 0.43%, compared to 0.24% among 16,029 placebo-treated patients, representing an increase of approximately one case of suicidal thinking or behavior for every 530 patients treated. There were four suicides in drug-treated patients in the trials and none in placebo-treated patients, but the number is too small to allow any conclusion about drug effect on suicide.

The increased risk of suicidal thoughts or behavior with AEDs was observed as early as one week after starting drug treatment with AEDs and persisted for the duration of treatment assessed. Because most trials included in the analysis did not extend beyond 24 weeks, the risk of suicidal thoughts or behavior beyond 24 weeks could not be assessed. The risk of suicidal thoughts or behavior was generally consistent among drugs in the data analyzed. The finding of increased risk with AEDs of varying

mechanisms of action and across a range of indications suggests that the risk applies to all AEDs used for any indication. The risk did not vary substantially by age (5 to 100 years) in the clinical trials analyzed. Table 2 shows absolute and relative risk by indication for all evaluated AEDs. TABLE 2. Risk by Indication for Antiepileptic Drugs in the Pooled Analysis

Indication	Placebo Patients with Events Per 1,000 Patients	Drug Patients with Events Per 1,000 Patients	Relative Risk: Incidence of Events in Drug Patients/Incidence in Placebo Patients	Risk Difference: Additional Drug Patients with Events Per 1,000 Patients
Epilepsy	1.0	3.4	3.5	2.4
Psychiatric	5.7	8.5	1.5	2.9
Other	1.0	1.8	1.9	0.9
Total	2.4	4.3	1.8	1.9

The relative risk for suicidal thoughts or behavior was higher in clinical trials for epilepsy than in clinical trials for psychiatric or other conditions, but the absolute risk differences were similar for the epilepsy and psychiatric indication

Anyone considering prescribing gabapentin or any other AED must balance the risk of suicidal thoughts or behavior with the risk of untreated illness. Epilepsy and many other illnesses for which AEDs are prescribed are themselves associated with morbidity and mortality and an increased risk of suicidal thoughts and behavior. Should suicidal thoughts and behavior emerge during treatment, the prescriber needs to consider whether the emergence of these symptoms in any given patient may be related to the illness being treated.

Patients, their caregivers, and families should be informed that AEDs increase the risk of suicidal thoughts and behavior and should be advised of the need to be alert for the emergence or worsening of the signs and symptoms of depression, any unusual changes in mood or behavior, or the emergence of suicidal

There is evidence from case reports, human studies, and animal studies associating gabapentin with serious, life-threatening, or fatal respiratory depression when coadministered with CNS depressants, including opioids, or in the setting of underlying respiratory impairment. When the decision is made co-prescribe gabapentin with another CNS depressant, particularly an opioid, or to prescribe gabapentin to patients with underlying respirator impairment, monitor patients for symptoms of respiratory depression and sedation, and consider initiating gabapentin at a low dose. The manag wal of CNS depressants (including ga

 $5.8 \qquad \text{Neuropsychiatric Adverse Reactions (Pediatric Patients 3 to 12 Years of Age)}$

Gabapentin use in pediatric patients with epilepsy 3 to 12 years of age is associated with the occurrence of CNS related adverse reactions. The most significant of these can be classified into the following categories: 1) emotional lability (primarily behavioral problems), 2) hostility, including aggressive behaviors, 3) thought disorder, including concentration problems and change in school performance, and 4) hyperkinesia (primarily restlessness and hyperactivity). Among the gabapentin-treated patients, most of the reactions were mild to moderate in intensity. In controlled clinical epilepsy trials in pediatric patients 3 to 12 years of age, the incidence of these adverse reactions was: emotional lability 6%

apentin-treated patients) versus 1,3% (placebo-treated patients); hostility 5,2% versus 1,3%; hyperkinesia 4,7% versus 2,9%; and thought disorder 1.7% versus 0%. One of these reactions, a report of hostility, was considered serious. Discontinuation of gabapentin treat patients reporting emotional lability and hyperkinesia and 0.9% of gabapentin-treated patients reporting hostility and thought disorder. One placebotreated patient (0.4%) withdrew due to emotional lability.

5.9 Tumorigenic Potential In an oral carcinogenicity study, gabapentin increased the incidence of pancreatic acinar cell tumors in rats [see Nonclinical Toxicology (13.1)]. The clinical significance of this finding is unknown. Clinical experience during gabapentin's premarketing development provides no direct means to assess its pot for inducing tumors in humans. In clinical studies in adjunctive therapy in epilepsy comprising 2,085 patient-years of exposure in patients > 12 years of age, new tumors were reported in

10 patients (2 breast, 3 brain, 2 lung, 1 adrenal, 1 non-Hodgkin's lymphoma, 1 endometrial carcinoma in situ), and preexisting tumors worsened in 11 patients (9 brain, 1 breast, 1 prostate) during or up to 2 years following discontinuation of gabapentin. Without knowledge of the background incidence and recurrence in a similar population not treated with gabapentin, it is impossible to know whether the incidence seen in this cohort is or is not affected by

 $5.10 \quad \text{Sudden and Unexplained Death in Patients with Epilepsy}$ During the course of premarketing development of gabapentin, 8 sudden and unexplained deaths were recorded among a cohort of 2203 epilepsy patients treated (2103 patient-years of exposure) with gabapentin.

Some of these could represent seizure-related deaths in which the seizure was not observed, e.g., at night. This represents an incidence of 0.0038 deaths per patient-year. Although this rate exceeds that expected in a healthy population matched for age and sex, it is within the range of estimates for the incidence of sudden unexplained deaths in patients with epilepsy not receiving gabapentin (ranging from 0.0005 for the general population of epileptics to 0.003 for a clinical trial population similar to that in the gabapentin program, to 0.005 for patients with refractory epilepsy). Consequently, whether these estimates provided.

---WARNINGS AND PRECAUTIONS- $Drug\ Reaction\ with\ Eosinophilia\ and\ Systemic\ Symptoms\ (Multiorgan\ hypersensitivity):\ Discontinue\ if\ alternative\ etiology\ is\ not\ established\ (5.1)$ Anaphylaxis and Angioedema: Discontinue and evaluate patient immediately (5.2)

Driving Impairment; Somnolence/Sedation and Dizziness: Warn patients not to drive until they have gained sufficient experience to assess whethe their ability to drive or operate heavy machinery will be impaired (5.3, 5.4) Increased seizure frequency may occur in patients with seizure disorders if gabapentin is abruptly discontinued (5.5) Suicidal Behavior and Ideation: Monitor for suicidal thoughts/behavior (5.6)

 $Respiratory \, {\tt Depression: May \, occur \, with \, gabapent in \, when \, used \, with \, concomitant \, central \, nervous \, system \, (CNS) \, depressants, \, including \, opioids, \, or \, in \, in \, (CNS) \, depressants, \, including \, opioids, \, or \, in \, (CNS) \, depressants, \, including \, opioids, \, or \, in \, (CNS) \, depressants, \, including \, opioids, \, or \, in \, (CNS) \, depressants, \, including \, opioids, \, or \, in \, (CNS) \, depressants, \, including \, opioids, \, or \, in \, (CNS) \, depressants, \, including \, opioids, \, or \, in \, (CNS) \, depressants, \, including \, opioids, \, or \, in \, (CNS) \, depressants, \, including \, opioids, \, or \, in \, (CNS) \, depressants, \, including \, opioids, \, or \, in \, (CNS) \, depressants, \, including \, opioids, \, or \, in \, (CNS) \, depressants, \, including \, opioids, \, or \, in \, (CNS) \, depressants, \, including \, opioids, \, or \, in \, (CNS) \, depressants, \, (CNS) \, depressa$ the setting of underlying respiratory impairment. Monitor patients and adjust dosage as appropriate (5.7) Neuropsychiatric Adverse Reactions in Children 3 to 12 Years of Age: Monitor for such events (5.8)

Most common adverse reactions (incidence ≥ 8% and at least twice that for placebo) were Postherpetic neuralgia: Dizziness, somnolence, and peripheral edema (6.1)

Epilepsy in patients > 12 years of age: Somnolence, dizziness, ataxia, fatigue, and nystagmus (6.1) Epilepsy in patients 3 to 12 years of age: Viral infection, fever, nausea and/or vomiting, somnolence, and hostility (6.1)

To report SUSPECTED ADVERSE REACTIONS, contact Annora Pharma Private Limited at 1-866-495-1995 or FDA at 1-800-FDA-1088 or

-DRUG INTERACTIONS-Concentrations increased by morphine; may need dose adjustment (5.4,7.1)

.....USE IN SPECIFIC POPULATIONS-Pregnancy: Based on animal data, may cause fetal harm (8.1) See 17 for PATIENT COUNSELING INFORMATION and Medication Guide.

Revised: 09/2024

7.3 Maalox (aluminum hydroxide, magnesium hydroxide) 7.4 Drug/Laboratory Test Interaction

USE IN SPECIFIC POPULATIONS Pregnancy 8.2 Lactation

Geriatric Use 8.6 Renal Impairme

DRUG ABUSE AND DEPENDENCE 9.1 Controlled Substance

10 OVERDOSAGE 11 DESCRIPTION

12 CLINICAL PHARMACOLOGY

13 NONCLINICAL TOXICOLOGY

14 CLINICAL STUDIES

14.2 Epilepsy for Partial Onset Seizures (Adjunctive Therapy 16 HOW SUPPLIED/STORAGE AND HANDLING

17 PATIENT COUNSELING INFORMATION Sections or subsections omitted from the full prescribing information are not listed

The following serious adverse reactions are discussed in greater detail in other sections: Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS)/Multiorgan Hypersensitivity (see Warnings and Precautions (5.1))

TABLE 3. Adverse Reactions in Pooled Placebo-Controlled Trials in Posthernetic Neuralgia

Anaphylaxis and Angioedema [see Warnings and Precautions (5.2)] Somnolence/Sedation and Dizziness/see Warnings and Precautions (5.4)/

Withdrawal Precipitated Seizure, Status Epilepticus /see Warnings and Preca Suicidal Behavior and Ideation (see Warnings and Precautions (5.6)) Respiratory Depression (see Warnings and Precautions (5.7)!

Neuropsychiatric Adverse Reactions (Pediatric Patients 3 to 12 Years of Age) (see Warnings and Precautions (5.8)!

Sudden and Unexplained Death in Patients with Epilepsy (see Warnings and Precautions (5.10)) 6.1 Clinical Trials Experience Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly

compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice Posthernetic Neuralgia eactions associated with the use of gabapentin in adults, not seen at an equivalent frequency among placebo-treated patients were dizziness, somnolence, and peripheral edema.

In the 2 controlled trials in postherpetic neuralgia, 16% of the 336 patients who received gabapentin and 9% of the 227 patients who received placebo

discontinued treatment because of an adverse reaction. The adverse reactions that most frequently led to withdrawal in gabapentin-treated patients were Table 3 lists adverse reactions that occurred in at least 1% of gabapentin -treated patients with postherpetic neuralgia participating in placebo-co trials and that were numerically more frequent in the gabapentin group than in the placebo group.

	N=336	N=227
	%	%
Body as a Whole		
Asthenia	6	5
Infection	5	4
Accidental injury	3	1
Digestive System		
Diarrhea	6	3
Dry mouth	5	1
Constipation	4	2
Nausea	4	3
Vomiting	3	2
Metabolic and Nutritional Disorders		
Peripheral edema	8	2
Weight gain	2	0
Hyperglycemia	1	0
Nervous System		
Dizziness	28	8
Somnolence	21	5
Ataxia	3	0
Abnormal thinking	3	0
Abnormal gait	2	0
Incoordination	2	0
Respiratory System		
Pharyngitis	1	0
Special Senses		
Amblyopia ^a	3	1
Conjunctivitis	1	0
Diplopia	1	0
Otitis media	1	0

Other reactions in more than 1% of patients but equally or more frequent in the placebo group included pain, tremor, neuralgia, back pain, dyspepsia There were no clinically important differences between men and women in the types and incidence of adverse reactions. Because there were few patient

whose race was reported as other than white, there are insufficient data to support a statement regarding the distribution of adverse reactions by race Epilepsy with Partial Onset Seizures (Adjunctive Therapy) The most common adverse reactions with gabapentin in combination with other antiepileptic drugs in patients > 12 years of age, not seen at an equivalen frequency among placebo-treated patients, were somnolence, dizziness, ataxia, fatigue, and nystagr

The most common adverse reactions with gabapentin in combination with other antiepileptic drugs in pediatric patients 3 to 12 years of age, not seen at an Precautions (5.8)].

premarketing clinical trials discontinued treatment because of an adverse reaction. The adverse reactions most commonly associated with withdrawal in patients > 12 years of age were somnolence (1.2%), ataxia (0.8%), fatigue (0.6%), nausea and/or vomiting (0.6%), and dizziness (0.6%). The adverse reactions most commonly associated with withdrawal in pediatric patients were emotional lability (1.6%), hostility (1.3%), and hyperkinesia (1.1%). Table 4 lists adverse reactions that occurred in at least 1% of gabapentin treated patients > 12 years of age with epilepsy participating in placebo controlled trials and were numerically more common in the gabapentin group. In these studies, either gabapentin or placebo was added to the patient's

TABLE 4. Adverse Reactions in Pooled Placebo-Controlled Add-On Trials in Epilepsy Patients > 12 Years of Age

	Gabapentin ^a N=543 %	Placebo* N=378 %
Body as a Whole		
Fatigue	11	5
Increased weight	3	2
Back pain	2	1
Peripheral edema	2	1
Cardiovascular		
Vasodilatation	1	0
Digestive System		
Dyspepsia	2	1
Dry mouth or throat	2	1
Constipation	2	1
Dental abnormalities	2	0
Nervous System		
Somnolence	19	9
Dizziness	17	7
Ataxia	13	6
Nystagmus	8	4
Tremor	7	3
Dysarthria	2	1
Amnesia	2	0
Depression	2	1
Abnormal thinking	2	1
Abnormal coordination	1	0
Respiratory System		
Pharyngitis	3	2
Coughing	2	1
Skin and Appendages		
Abrasion	1	0
<u>Urogenital System</u>		
Impotence	2	1
Special Senses		
Diplopia	6	2

Amblyopia^b ^aPlus background antiepileptic drug therapy Amblyopia was often described as blurred vision

Among the adverse reactions occurring at an incidence of at least 10% in gabapentin-treated patients, somnolence and ataxia appeared to exhibit a p The overall incidence of adverse reactions and the types of adverse reactions seen were similar among men and women treated with gabapentin. The incidence of adverse reactions increased slightly with increasing age in patients treated with either gabapentin or placebo. Because only 3% of patients (28/921) in placebo-controlled studies were identified as nonwhite (black or other), there are insufficient data to support a statement regarding the distribution of adverse reactions by race.

Table 5 lists adverse reactions that occurred in at least 2% of gabapentin -treated patients, age 3 to 12 years of age with epilepsy participating in pla controlled trials, and which were numerically more common in the gabapentin group.

	Gabapentin ^a N=119	Placebo° N=128
	%	%
Body as a Whole		
Viral infection	11	3
Fever	10	3
Increased weight	3	1
Fatigue	3	2
Digestive System		
Nausea and/or vomiting	8	7
Nervous System		
Somnolence	8	5
Hostility	8	2
Emotional lability	4	2
Dizziness	3	2
Hyperkinesia	3	1
Respiratory System		
Bronchitis	3	1
Respiratory infection	3	1

Other reactions in more than 2% of pediatric patients 3 to 12 years of age but equally or more frequent in the placebo group included: pharyngitis, upper respiratory infection, headache, rhinitis, convulsions, diarrhea, anorexia, coughing, and otitis med 6.2 Postmarketing Experience

The following adverse reactions have been identified during postmarketing use of gabapentin. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure Hepatobiliary Disorders: jaundice

Investigations: elevated creatine kinase, elevated liver function test Metabolism and Nutrition Disorders: hyponatremia Musculoskeletal and Connective Tissue Disorder: rhabdomyolysis

Nervous System Disorders: movement disorder Psychiatric Disorders: agitation

Reproductive System and Breast Disorders: breast enlargement, changes in libido, ejaculation disorders and anorgasmia Skin and Subcutaneous Tissue Disorders: angioedema (see Warnings and Precautions (5.2)), bullous pemphigoid, erythema mu

There are postmarketing reports of life-threatening or fatal respiratory depression in patients taking gabapentin with opioids or other CNS depressants, or in the setting of underlying respiratory impairment /see Warnings and Precautions (5.7)/. Adverse reactions following the abrupt discontinuation of gabapentin have also been reported. The most frequently reported reactions were anxiety nnia, nausea, pain, and sweating

DRUG INTERACTIONS 7.1 Opioids

Respiratory depression and sedation, sometimes resulting in death, have been reported following coadministration of gabapentin with opioids (e.g., morphine, hydrocodone, oxycodone, buprenorphine) [see Warnings and Precautions (5.7)]

MEDICATION GUIDE

Gabapentin (gab" a pen' tin) Oral Solution

What is the most important information I should know about gabapentin oral

Do not stop taking gabapentin oral solution without first talking to your healthcare provider.

Stopping gabapentin oral solution suddenly can cause serious problems.

Gabapentin oral solution can cause serious side effects including: 1. Suicidal Thoughts. Like other antiepileptic drugs, gabapentin oral solution may cause suicidal thoughts or actions in a very small number of people, about 1 in 500.

Call a healthcare provider right away if you have any of these symptoms, especially if they are new, worse, or worry you:

• thoughts about suicide or dving

· attempts to commit suicide new or worse depression

new or worse anxiety

feeling agitated or restless

panic attacks trouble sleeping (insomnia)

new or worse irritability acting aggressive, being angry, or violent

 acting on dangerous impulses an extreme increase in activity and talking (mania) other unusual changes in behavior or mood

How can I watch for early symptoms of suicidal thoughts and actions? · Pay attention to any changes, especially sudden changes, in mood, behaviors,

thoughts, or feelings. Keep all follow-up visits with your healthcare provider as scheduled.

Call your healthcare provider between visits as needed, especially if you are worried

Do not stop taking gabapentin oral solution without first talking to a healthcare provider. Stopping gabapentin oral solution suddenly can cause serious problems. Stopping a seizure medicine suddenly in a person who has epilepsy can cause seizures that will

Suicidal thoughts or actions can be caused by things other than medicines. If you have suicidal thoughts or actions, your healthcare provider may check for other

2. Changes in behavior and thinking. Using gabapentin oral solution in children 3 to 12 years

of age can cause emotional changes, aggressive behavior, problems with concentration, changes in school performance, restlessness, and hyperactivity. 3. Gabapentin oral solution may cause serious or life-threatening allergic reactions that may affect your skin or other parts of your body such as your liver or blood cells. This may cause you to be hospitalized or to stop gabapentin oral solution. You may or may not

have a rash with an allergic reaction caused by gabapentin oral solution. Call a healthcare

provider right away if you have any of the following symptoms:

about symptoms.

skin rash

hives difficulty breathing

not stop (status epilepticus).

 swollen glands that do not go away swelling of your face, lips, throat, or tongue yellowing of your skin or of the whites of the eyes

 unusual bruising or bleeding severe fatigue or weakness

 unexpected muscle pain frequent infections

examine you to decide if you should continue taking gabapentin oral solution. 4. Serious breathing problems. Serious breathing problems can happen when gabapentin

breathing slower than normal
 confusion

oral solution is taken with other medicines (such as opioid pain medicines) that can cause severe sleepiness or decreased awareness, or when it is taken by someone who already has breathing problems. Call your healthcare provider or get medical help right away if you have any of the following symptoms: feel short of breath feel very tireddizziness

headache

These symptoms may be the first signs of a serious reaction. A healthcare provider should

they can call your healthcare provider or get medical help if you are unable to seek treatment on your own. Your healthcare provider may lower your dose or stop your treatment with gabapentin

Be sure that your caregiver or family members know which symptoms may be serious so

oral solution if you have serious breathing problems. What is gabapentin oral solution?

Gabapentin oral solution is a prescription medicine used to treat: pain from damaged nerves (postherpetic pain) that follows healing of shingles (a painful

rash that comes after a herpes zoster infection) in adults. partial seizures when taken together with other medicines in adults and children 3 years of age and older with seizures.

It is not known if gabapentin oral solution is safe and effective to treat: children with pain from damaged nerves from a painful rash caused by the chicken pox

partial seizures in children under 3 years of age.

Do not take gabapentin oral solution if you: are allergic to gabapentin or any of the other ingredients in gabapentin oral solution. See the end of this Medication Guide for a complete list of ingredients in gabapentin oral

Before taking gabapentin oral solution, tell your healthcare provider about all of

your medical conditions including if you: have or have had kidney problems or are on hemodialysis.

 have or have had depression, mood problems, or suicidal thoughts or behavior. have a history of drug abuse.

 have diabetes. have breathing problems. are pregnant or plan to become pregnant. It is not known if gabapentin oral solution can harm your unborn baby. Tell your healthcare provider right away if you become pregnant while taking gabapentin oral solution. You and your healthcare provider will decide if you

should take gabapentin oral solution while you are pregnant. are breastfeeding or plan to breastfeed. Gabapentin can pass into breast milk. You and your healthcare provider should decide how you will feed your baby while you take

gabapentin oral solution. Tell your healthcare provider about all the medicines you take, including prescription

and over-the-counter medicines, vitamins, and herbal supplements. Especially tell your healthcare provider if you take:

• any opioid pain medicine such as morphine, hydrocodone, oxycodone, or buprenorphine. any medicines for anxiety (such as lorazepam) or insomnia (such as zolpidem), or any medicines that make you sleepy. You may have a higher chance for dizziness, sleepiness, or breathing problems if these medicines are taken with gabapentin oral solution.

Taking gabapentin oral solution with certain other medicines can cause side effects or affect

how well they work. **Do not** start or stop other medicines without talking to your healthcare

Know the medicines you take. Keep a list of them and show it to your healthcare provider and pharmacist when you get a new medicine. How should I take gabapentin oral solution?

of gabapentin oral solution.

oral solution?"

• Take gabapentin oral solution exactly as prescribed. Your healthcare provider will tell you how much gabapentin oral solution to take.

Do not change your dose of gabapentin without talking to your healthcare provider. Gabapentin oral solution can be taken with or without food.

If you take an antacid containing aluminum and magnesium, such as Maalox, Mylanta, Gelusil, Gaviscon, or Di-Gel, you should wait at least 2 hours before taking your next dose

1-800-222-1222. Advice is also available online at poisonhelp.org. What should I avoid while taking gabapentin oral solution?

In case of overdose, get medical help or contact a live Poison Center expert right away at

Do not drive, operate heavy machinery, or do other dangerous activities until you know

Do not drink alcohol or take other medicines that make you sleepy or dizzy while taking gabapentin oral solution without first talking with your healthcare provider. Taking gabapentin oral solution with alcohol or drugs that cause sleepiness or dizziness may make your sleepiness or dizziness worse.

how gabapentin oral solution affects you. Gabapentin oral solution can slow your thinking and motor skills.

What are the possible side effects of gabapentin oral solution?

Gabapentin oral solution may cause serious side effects, including: • See "What is the most important information I should know about gabapentin

problems driving while using gabapentin oral solution. See "What should I avoid while taking gabapentin oral solution?" sleepiness and dizziness, which could increase your chance of having an accidental

injury, including falls. The most common side effects of gabapentin oral solution include:

 lack of coordination feeling drowsy

viral infection difficulty with speaking

 nausea and vomiting jerky movements

Customer Market Cambei Non Printing Colors Die cut Dimensions (mm) 350 x 700 mm Pharma Code No. Front-867 & Back-868 **Printing Colours** Others: Pharma code position and Orientation are tentative, will be changed based on folding size

Artwork information

- tremor swelling, usually of legs and feet
- feeling tired
- difficulty with coordination double vision
- unusual eye movement

Tell your healthcare provider if you have any side effect that bothers you or that does not go

These are not all the possible side effects of gabapentin oral solution. For more information, ask your healthcare provider or pharmacist.

Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.

How should I store gabapentin oral solution?

• Store gabapentin oral solution in the refrigerator between 36°F to 46°F (2°C to 8°C). Keep gabapentin oral solution and all medicines out of the reach of children.

General information about the safe and effective use of gabapentin oral solution.

Medicines are sometimes prescribed for purposes other than those listed in a Medication Guide. Do not use gabapentin oral solution for a condition for which it was not prescribed. Do not give gabapentin oral solution to other people, even if they have the same symptoms that you have. It may harm them. You can ask your pharmacist or healthcare provider for information about gabapentin oral solution that is written for health professionals.

What are the ingredients in gabapentin oral solution?

Active ingredient: gabapentin.

Inactive ingredients in the oral solution: carboxymethylcellulose sodium, methylparaben, propylene glycol, propylparaben, purified water, xylitol, anise flavor, artificial strawberry flavor and hydrochloric acid added for adjustment of pH.

The brands listed are the registered trademarks of their respective owners and are not trademarks of Annora Pharma Private Limited. Medication Guide available at http://camberpharma.com/medication-guides.

CAMBER Manufactured for:

Camber Pharmaceuticals, Inc. Piscataway, NJ 08854

By: Annora Pharma Pvt. Ltd. Sangareddy - 502313, Telangana, India.

For more information, call Annora Pharma Private Limited at 1-866-495-1995.

This Medication Guide has been approved by the U.S. Food and Drug Administration

Revised: 09/2024

Coadministration of gabapentin with hydrocodone decreases hydrocodone exposure [see Clinical Pharmacology (12.3)]. The potential for alteration i hydrocodone exposure and effect should be considered when gabapentin is started or discontinued in a patient taking hydrocodone When gabapentin is administered with morphine, patients should be observed for signs of CNS depression, such as somnolence, sedation and respiratory

on [see Clinical Pharmacology (12.3)]. 7.2 Other Antiepileptic Drugs

Gabapentin is not appreciably metabolized nor does it interfere with the metabolism of commonly coadministered antiepileptic drugs [see Clinical Pharmacology (12.3)]. 7.3 Maalox® (aluminum hydroxide, magnesium hydroxide)

The mean bioavailability of gabapentin was reduced by about 20% with concomitant use of an antacid (Maalox®) containing magnesium and aluminun hydroxides. It is recommended that gabapentin be taken at least 2 hours following Maalox administration [see Clinical Pharmacology (12.3]]. 7.4 Drug/Laboratory Test Interactions

Because false positive readings were reported with the Ames N-Multistix SG* dipstick test for urinary protein when gabapentin was added to othe antiepileptic drugs, the more specific sulfosalicylic acid precipitation procedure is recommended to determine the presence of urine protein

8 USE IN SPECIFIC POPULATIONS 8.1 Pregnancy

The totality of available data from published prospective and retrospective cohort studies pertaining to gabapentin use during pregnancy has not indicated an increased risk of major birth defects or miscarriage. There are important methodological limitations hindering interpretation of these studies [see Data] In nonclinical studies in mice, rats, and rabbits, gabapentin was developmentally toxic (increased fetal skeletal and visceral abnormalities, and increased embryofetal mortality) when administered to pregnant animals at doses similar to or lower than those used clinically (see Data). The background risk of major birth defects and miscarriage for the indicated population is unknown. All pregnancies have a background risk of birth defect loss, or other adverse outcomes. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively.

Data

An observational study based on routinely collected data from administrative and medical registers in Denmark, Finland, Norway, and Sweden, compared the prevalence of major congenital malformations in approximately 1,500 pregnancies exposed to gabapentin monotherapy in the first trimester to pregnancies unexposed to antiepileptics (n=2,995,816) and pregnancies exposed to lamotrigine monotherapy in the first trimester (n=7,582). The ed prevalence ratios in a pooled analysis were 1.00 (95% CI: 0.80-1.24) compared to pregnancies unexposed to antiepileptics and 1.29 (95% CI: 1.00-1.67) compared to pregnancies exposed to lamotrigine monotherapy in the first trimester.

Data from another observational study in the US based on Medicaid data, which compared the risk for major congenital malformations in more than 4,600 pregnancies exposed to gabapentin during the first trimester to unexposed pregnancies (n = 1,753,865), estimated an adjusted relative risk of 1.07 (95% CI: 0.94-1.21).

The data from these observational studies should be interpreted with caution due to the potential for exposure misclassification, outcome

When pregnant mice received oral doses of gabapentin (500, 1000, or 3000 mg/kg/day) during the period of organogenesis, embryofetal toxicity (increased incidences of skeletal variations) was observed at the two highest doses. The no-effect dose for embryofetal developmental toxicity in mice (500 mg/kg/day) is less than the maximum recommended human dose (MRHD) of 3600 mg on a body surface area (mg/m²) basis. In studies in which rats received oral doses of gabapentin (500 to 2000 mg/kg/day) during pregnancy, adverse effect on offspring de incidences of hydroureter and/or hydronephrosis) were observed at all doses. The lowest dose tested is similar to the MRHD on a mg/m²basis.

When pregnant rabbits were treated with gabapentin during the period of organogenesis, an increase in embryofetal mortality was observed at all doses tested (60, 300, or 1500 mg/kg). The lowest dose tested is less than the MRHD on a mg/m²basis. In a published study, gabapentin (400 mg/kg/day) was administered by intraperitoneal injection to neonatal mice during the first postnatal week, a period of synaptogenesis in rodents (corresponding to the last trimester of pregnancy in humans). Gabapentin caused a marked decrease in neuronal synapse formation in brains of intact mice and abnormal neuronal synapse formation in a mouse model of synaptic repair. Gabapentin has been shown in vitro to interfere with activity of the α2δ subunit of voltage-activated calcium channels, a receptor involved in neuronal synaptogenesis. The clinical significance

8.2 Lactation Gabapentin is secreted in human milk following oral administration. The effects on the breastfed infant and on milk production are unknown. The developmental and health benefits of breastfeeding should be considered along with the mother's clinical need for gabapentin and any potential adverse effects on the breastfed infant from gabapentin or from the underlying maternal condition

Safety and effectiveness of gabapentin in the management of postherpetic neuralgia in pediatric patients have not been established. Safety and effectiveness as adjunctive therapy in the treatment of partial seizures in pediatric patients below the age of 3 years has not been establishe

(see Clinical Studies (14.2)). 8.5 Geriatric Use The total number of patients treated with gabapentin in controlled clinical trials in patients with postherpetic neuralgia was 336, of which 102 (30%) were 65 to 74 years of age, and 168 (50%) were 75 years of age and older. There was a larger treatment effect in patients 75 years of age and older compared to younger patients who received the same dosage. Since gabapentin is almost exclusively eliminated by renal excretion, the larger treatment effect observed

in patients ≥ 75 years may be a consequence of increased gabapentin exposure for a given dose that results from an age-related decrease in renal function However, other factors cannot be excluded. The types and incidence of adverse reactions were similar across age groups except for peripheral edema and ataxia, which tended to increase in incidence with age. Clinical studies of gabapentin in epilepsy did not include sufficient numbers of subjects aged 65 and over to determine whether they responded differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

This drug is known to be substantially excreted by the kidney, and the risk of toxic reactions to this drug may be greater in patients with impaired rena function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and dose should be adjusted $based \ on \ creatinine \ clearance \ values \ in \ these \ patients \ \textit{/see Dosage and Administration (2.4), Adverse Reactions (6), and \ Clinical Pharmacology (12.3)/.}$

Dosage adjustment in adult patients with compromised renal function is necessary [see Dosage and Administration (2,3) and Clinical Pharmacology (12,3)]. Pediatric patients with renal insufficiency have not been studied.

Dosage adjustment in patients undergoing hemodialysis is necessary [see Dosage and Administration (2.3] and Clinical Pharmacology (12.3)]

9 DRUG ABUSE AND DEPENDENCE

9.1 Controlled Substance

Gabapentin is not a scheduled drug

10 OVERDOSAGE

12 CLINICAL PHARMACOLOGY

Abuse is the intentional, non-therapeutic use of a drug, even once, for its desirable psychological or physiological effects. Misuse is the intentional use, for therapeutic purposes, of a drug by an individual in a way other than prescribed by a health care provider or for whom it was not prescribed. Gabapentin does not exhibit affinity for benzodiazepine, opioid (mu, delta or kappa), or cannabinoid 1 receptor sites. Gabapentin misuse and abuse have Some of these individuals were taking higher than recommended doses of gabapentin for unapproved uses. When prescribing gabapentin, carefully evaluate patients for a history of drug abuse and observe them for signs and symptoms of gabapentin misuse or abuse (e.g., self-dose escalation and drug-seeking behavior). The abuse potential of gabapentin has not been evaluated in human studies. 9.3 Dependence

Physical dependence is a state that develops as a result of physiological adaptation in response to repeated drug use, manifested by withdrawal signs and symptoms after abrupt discontinuation or a significant dose reduction of a drug. There are rare postmarketing reports of individuals experiencing withdrawal symptoms shortly after discontinuing higher than recommended doses of gabapentin used to treat illnesses for which the drug is not approved Such symptoms included agitation, disorientation and confusion after suddenly discontinuing gabapentin that resolved after restart dependence potential of gabapentin has not been evaluated in human studies.

Acute oral overdoses of gabapentin have been reported. Symptoms have included double vision, tremor, slurred speech, drowsiness, altered mental status, dizziness, lethargy, and diarrhea. Fatal respiratory depression has been reported with gabapentin overdose, alone and in combination with other CNS Gabapentin can be removed by hemodialysis.

If overexposure occurs, call your poison control center at 1-800-222-1222.

11 DESCRIPTION The active ingredient in gabapent in or al solution is gabapent in, USP which has the chemical name 1-(Aminomethyl) cyclo hexane acetic acid.

Signs of acute toxicity in animals included ataxia, labored breathing, ptosis, sedation, hypoactivity, or excitation

 $The \,molecular \,formula\,of\,gabapent in \,is\,C_0H_{17}NO_2\,and\,the\,molecular\,weight\,is\,171.24.\,The\,structural\,formula\,of\,gabapent in\,is:$ H₂N -

Gabapentin, USP is a white to off-white crystalline solid with a pK_{st} of 3.7 and a pK_{s2} of 10.7. It is freely soluble in water and both basic and acidic aqueous solutions. The log of the partition coefficient is -1.1. Gabapentin oral solution contains 250 mg of gabapentin per 5 mL (50 mg per mL) and the following inactive ingredients: carboxymethylcellulose sodium methylparaben, propylene glycol, propylparaben, purified water, xylitol, anise flavor, artificial strawberry flavor and hydrochloric acid added for

12.1 Mechanism of Action The precise mechanisms by which gabapentin produces its analgesic and antiepileptic actions are unknown. Gabapentin is structurally related to the neurotransmitter gamma-aminobutyric acid (GABA) but has no effect on GABA binding, uptake, or degradation. In vitro studies have shown that gabapenting binds with high-affinity to the $\alpha 2\delta$ subunit of voltage-activated calcium channels; however, the relationship of this binding to the therapeutic effects of

12.3 Pharmacokinetics All pharmacological actions following gabapentin administration are due to the activity of the parent compound; gabapentin is not appreciably metabolizer in humans.

Oral Bioavailability pentin bigavailability is not dose proportional: i.e., as dose is increased, bigavailability decreases. Bigavailability of gabapentin is approximately 60%, 47%, 34%, 33%, and 27% following 900, 1200, 2400, 3600, and 4800 mg/day given in 3 divided doses, respectively. Food has only a slight effect on the rate and extent of absorption of gabapentin (14% increase in AUC and C_{mx}).

Less than 3% of gabapentin circulates bound to plasma protein. The apparent volume of distribution of gabapentin after 150 mg intravenous administration is 58 ± 6 L (mean ± SD). In patients with epilepsy, steady-state predose (Cmin) concentrations of gabapentin in cerebrospinal fluid were approximately 20%

Gabapentin is eliminated from the systemic circulation by renal excretion as unchanged drug. Gabapentin is not appreciably metabolized in humans. Gabapentin elimination half-life is 5 to 7 hours and is unaltered by dose or following multiple dosing. Gabapentin elimination rate constant, plasma clearance, and renal clearance are directly proportional to creatinine clearance. In elderly patients, and in patients with impaired renal function, gabapentin plasma clearance is reduced. Gabapentin can be removed from plasma by hemodialysis. Specific Population:

The effect of age was studied in subjects 20 to 80 years of age. Apparent oral clearance (CL/F) of gabapentin decreased as age increased, from about 225 mL/min in those under 30 years of age to about 125 mL/min in those over 70 years of age. Renal clearance (CLr) and CLr adjusted for body surface area also declined with age; however, the decline in the renal clearance of gabapentin with age can largely be explained by the decline in renal function. (see ation (2.4) and Use in Specific Populations (8.5)).

Although no formal study has been conducted to compare the pharmacokinetics of gabapentin in men and women, it appears that the pharmacokinetic parameters for males and females are similar and there are no significant gender differences

Pharmacokinetic differences due to race have not been studied. Because gabapentin is primarily renally excreted and there are no important racial

Gabapentin pharmacokinetics were determined in 48 pediatric subjects between the ages of 1 month and 12 years following a dose of approximately 10 mg/kg. Peak plasma concentrations were similar across the entire age group and occurred 2 to 3 hours postdose. In general, pediatric subjects between 1 month and < 5 years of age achieved approximately 30% lower exposure (AUC) than that observed in those 5 years of age and older. Accordingly, oral clearance normalized per body weight was higher in the younger children. Apparent oral clearance of gabapentin was directly proportional to creatining clearance. Gabapentin elimination half-life averaged 4.7 hours and was similar across the age groups studied

A population pharmacokinetic analysis was performed in 253 pediatric subjects between 1 month and 13 years of age. Patients received 10 to 65 mg/kg/day given three times a day. Apparent oral clearance (CLIF) was directly proportional to creating learned and this relationship was similar following a single dose and at steady-state. Higher oral clearance values were observed in children < 5 years of age compared to those observed in children 5 years of age and older, when normalized per body weight. The clearance was highly variable in infants < 1 year of age. The normalized CL/F values rved in pediatric patients 5 years of age and older were consistent with values observed in adults after a single dose. The oral volume of distribution normalized per body weight was constant across the age range. $These pharmacokinetic data indicate that the effective daily dose in pediatric patients with epilepsy ages 3 and 4 years should be 40 \, mg/kg/day to achieve the daily dose in pediatric patients with epilepsy ages 3 and 4 years should be 40 \, mg/kg/day to achieve the daily dose in pediatric patients with epilepsy ages 3 and 4 years should be 40 \, mg/kg/day to achieve the daily dose in pediatric patients with epilepsy ages 3 and 4 years should be 40 \, mg/kg/day to achieve the daily dose in pediatric patients with epilepsy ages 3 and 4 years should be 40 \, mg/kg/day to achieve the daily dose in pediatric patients with epilepsy ages 3 and 4 years should be 40 \, mg/kg/day to achieve the daily dose in pediatric patients with epilepsy ages 3 and 4 years should be 40 \, mg/kg/day to achieve the daily dose in pediatric patients with epilepsy ages 3 and 4 years should be 40 \, mg/kg/day to achieve the daily dose in pediatric patients with epilepsy ages 3 and 4 years should be 40 \, mg/kg/day to achieve the daily dose in pediatric patients with epilepsy ages 3 and 4 years should be 40 \, mg/kg/day to achieve the daily dose in pediatric patients with epilepsy ages 3 and 4 years should be 40 \, mg/kg/day to achieve the daily dose in pediatric patients with epilepsy ages 3 and 4 years should be 40 \, mg/kg/day to achieve the daily dose in pediatric patients with epilepsy ages 3 and 4 years should be 40 \, mg/kg/day to achieve the daily dose in pediatric patients with epilepsy ages 3 and 4 years should be 40 \, mg/kg/day to achieve the daily dose in pediatric patients with epilepsy ages 3 and 4 years should be 40 \, mg/kg/day to achieve the daily dose in pediatric patients with epilepsy ages 3 and 4 years should be 40 \, mg/kg/day to achieve the daily dose in pediatric patients with epilepsy ages 3 and 4 years should be 40 \, mg/kg/day to achieve the daily dose in pediatric patients with epilepsy ages 3 and 4 years should be 40 \, mg/kg/day to achieve the daily dose in pediatric patients with a daily dose in pediatric patients with a d$

average plasma concentrations similar to those achieved in patients 5 years of age and older receiving gabapentin at 30 mg/kg/day /see Dosage and Adult Patients with Renal Impairment

Subjects (N=60) with renal impairment (mean creatinine clearance ranging from 13 to 114 mL/min) were administered single 400 mg oral doses of gabapentin. The mean gabapentin half-life ranged from about 6.5 hours (patients with creatinine clearance > 60 mL/min) to 52 hours (creatinine clearance : 30 mL/min) and gabapentin renal clearance from about 90 mL/min (> 60 mL/min group) to about 10 mL/min (< 30 mL/min). Mean plasma clearance (CL/F) decreased from approximately 190 mL/min to 20 mL/min (see Dosage and Administration (2.3) and Use in Specific Populations (8.6). Pediatric patients with renal insufficiency have not been studied

In a study in anuric adult subjects (N = 11), the apparent elimination half-life of gabapentin on nondialysis days was about 132 hours; during dialysis the apparent half-life of gabapentin was reduced to 3.8 hours. Hemodialysis thus has a significant effect on gabapentin elimination in anuric subjects /see Dosage and Administration (2.3) and Use in Specific Populations (8.6)].

Hepatic Disease Because gabapentin is not metabolized, no study was performed in patients with hepatic impairment Drug Interactions

Hemodialysis

In vitro studies were conducted to investigate the potential of gabapentin to inhibit the major cytochrome P450 enzymes (CYP1A2, CYP2A6, CYP2C9, CYP2C19, CY of isoform CYP2A6 observed. No inhibition of any of the other isoforms tested was observed at gabapentin con In Vivo Studies

The drug interaction data described in this section were obtained from studies involving healthy adults and adult patients with epilepsy

In a single (400 mg) and multiple dose (400 mg three times a day) study of gabapentin in epileptic patients (N=8) maintained on phenytoir $monotherapy\ for\ at\ least\ 2\ months,\ gabapent in\ had\ no\ effect\ on\ the\ steady\ state\ trough\ plasma\ concentrations\ of\ phenytoin\ and\ phenytoin\ had\ no\ properties of\ phenytoin\ properties\ p$ effect on gabapentin pharmacokinetics.

<u>Carbamazepine</u> Steady-state trough plasma carbamazepine and carbamazepine 10, 11 epoxide concentrations were not affected by concomitant gabapenting (400 mg three times a day; N = 12) administration. Likewise, gabapentin pharmacokinetics were unaltered by carbamazepine administration.

he mean steady-state trough serum valproic acid concentrations prior to and during concomitant gabapentin administration (400 mg three times a day; N = 17) were not different and neither were gabapentin pharmacokinetic parameters affected by valproic acid.

Phenobarbital $\overline{\text{Estimates of steady-state pharmacokinetic parameters for phenobarbital or gabapentin (300 \, \text{mg three times a day; N = 12) are identical whether the}$ Coadministration (N = 18) of naproxen sodium capsules (250 mg) with gabapentin (125 mg) appears to increase the amount of gabapentin absorbed

by 12% to 15%. Gabapentin had no effect on naproxen pharmacokinetic parameters. These doses are lower than the therapeutic doses for both drugs. The magnitude of interaction within the recommended dose ranges of either drug is not known. **Hydrocodone** Coadministration of gabagentin (125 to 500 mg; N = 48) decreases hydrocodone (10 mg; N = 50) C__ and AUC values in a dose-dependent manner

relative to administration of hydrocodone alone, C_m and AUC values are 3% to 4% lower, respectively, after administration of 125 mg gabapentin and 21% to 22% lower, respectively, after administration of 500 mg gabapentin. The mechanism for this interaction is unknown. Hydrocodone increases gabapentin AUC values by 14%. The magnitude of interaction at other doses is not known. A literature article reported that when a 60 mg controlled-release morphine capsule was administered 2 hours prior to a 600 mg gabapentin capsule (N = 12), mean gabapentin AUC increased by 44% compared to gabapentin administered without morphine. Morphine pharmacok

values were not affected by administration of gabagentin 2 hours after morphine. The magnitude of interaction at other doses is not known In the presence of cimetidine at 300 mg four times a day (N = 12), the mean apparent oral clearance of gabanentin fell by 14% and creatining clearance fell by 10%. Thus, cimetidine appeared to alter the renal excretion of both gabapentin and creatinine, an endogenous marker of rena

function. This decrease in excretion of gabapentin by cimetidine is not expected to be of clinical importance. The effect of gabapentin on cimetidine was not evaluated. Based on AUC and half-life, multiple-dose pharmacokinetic profiles of norethindrone and ethinyl estradiol following administration of tablets $\begin{array}{l} \text{containing 2-S mg of norethindrone acetate and 50 meg of ethinyl estradiol were similar with and without coadministration of gabapentin (400 mg three times a day; N = 13). The <math>C_{\text{mo}}$ of norethindrone was 13% higher when it was coadministered with gabapentin; this interaction is not expected to

be of clinical importance. Antacid (Maalox®) (aluminum hydroxide, magnesium hydroxide)

Antacic (Maalox) containing magnesium and aluminum hydroxides reduced the mean bioavailability of gabapentin (N = 16) by about 20%. This decrease in bioavailability was about 10% when gabapentin was administered 2 hours after Maalox.

Probenecid is a blocker of renal tubular secretion. Gabapentin pharmacokinetic parameters without and with probenecid were comparable. This indicates that gabapentin does not undergo renal tubular secretion by the pathway that is blocked by probenecid 13 NONCLINICAL TOXICOLOGY

ttin was administered orally to mice and rats in 2-year carcinogenicity studies. No evidence of drug-related carcinogenicity was observed in mice treated at doses up to 2000 mg/kg/day. At 2000 mg/kg, the plasma gabapentin exposure (AUC) in mice was approximately 2 times that in humans at the MRHD of 3600 mg/day. In rats, increases in the incidence of pancreatic acinar cell adenoma and carcinoma were found in male rats receiving the highest dose (2000 mg/kg), but not at doses of 250 or 1000 mg/kg/day. At 1000 mg/kg, the plasma gabapentin exposure (AUC) in rats was appro

 $Studies \ designed \ to \ investigate \ the \ mechanism \ of \ gabapent in-induced \ pancreatic \ carcinogenesis \ in \ rats \ indicate \ that \ gabapent in \ stimulates \ DNA \ synthesis$ in rat pancreatic acinar cells in vitro and, thus, may be acting as a tumor promoter by enhancing mitogenic activity. It is not known whether gabapentin has

Mutagenesis monstrate mutagenic or genotoxic potential in in vitro (Ames test, HGPRT forward mutation assay in Chinese hamster lung cells) and in vivo (chromosomal aberration and micronucleus test in Chinese hamster bone marrow, mouse micronucleus, unscheduled DNA synthesis in rat

Impairment of Fertility No adverse effects on fertility or reproduction were observed in rats at doses up to 2000 mg/kg. At 2000 mg/kg, the plasma gabapentin exposure (AUC) in

rats is approximately 8 times that in humans at the MRHD 14 CLINICAL STUDIES

14.1 Postherpetic Neuralgia Gabapentin was evaluated for the management of postherpetic neuralgia (PHN) in two randomized, double-blind, placebo-controlled, multicenter studies. The intent-to-treat (ITT) population consisted of a total of 563 patients with pain for more than 3 months after healing of the herpes zoster skin rash (Table 6).

TABLE 6. Controlled PHN Studies: Duration, Dosages, and Number of Patients Gabapentin (mg/day)^a Target Dose Gabapentin Placebo 8 weeks 3600 1800. 240n

*Given in 3 divided doses (TID) Each study included a 7- or 8-week double-blind phase (3 or 4 weeks of titration and 4 weeks of fixed dose). Patients initiated treatment with titration to a maximum of 900 mg/day gabapentin over 3 days. Dosages were then to be titrated in 600 to 1200 mg/day increments at 3- to 7-day intervals to the target dose over 3 to 4 weeks. Patients recorded their pain in a daily diary using an 11-point numeric pain rating scale ranging from 0 (no pain) to 10 (worst possible pain). A mean pain score during baseline of at least 4 was required for randomization. Analyses were conducted using the ITT population (all randomized natients who received at least one dose of study medication)

Total

Both studies demonstrated efficacy compared to placebo at all doses tested. The reduction in weekly mean pain scores was seen by Week 1 in both studies, and were maintained to the end of treatment. Comparable treatment effects were observed in all active treatment arms. Pharmacokinetic/pharmacodynamic modeling provided confirmatory evidence of efficacy across all doses. Figures 1 and 2 show pain intensity scores over time for Studies 1 and 2.

Figure 1. Weekly Mean Pain Scores (Observed Cases in ITT Population): Study 1

that in humans at the MRHD.

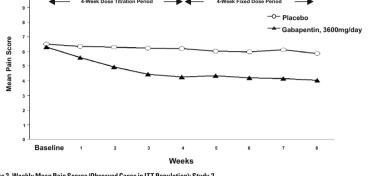
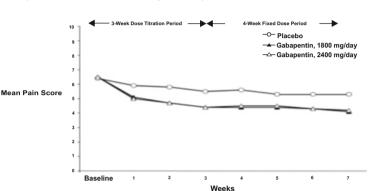
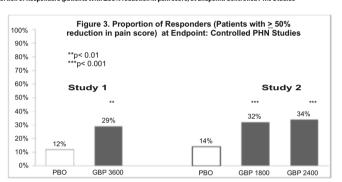




Figure 2. Weekly Mean Pain Scores (Observed Cases in ITT Population): Study 2

The proportion of responders (those patients reporting at least 50% improvement in endpoint pain score compared to baseline) was calculated for each

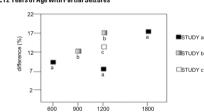
Figure 3. Proportion of Responders (patients with ≥50% reduction in pain score) at Endpoint: Controlled PHN Studies

14.2 Epilepsy for Partial Onset Seizures (Adjunctive Therapy)

ss of gabapentin as adjunctive therapy (added to other antiepileptic drugs) was established in multicenter placebo-controlled, double-blind, parallel-group clinical trials in adult and pediatric patients (3 years and older) with refractory partial seizures. ence of effectiveness was obtained in three trials conducted in 705 patients (age 12 years and above) and one trial conducted in 247 pediatric patients (3 to 12 years of age). The patients enrolled had a history of at least 4 partial seizures per month in spite of receiving one or more antiepileptic drugs at therapeutic levels and were observed on their established antiepileptic drug regimen during a 12-week basilene period (6 weeks in the study of pediatric patients). In patients continuing to have at least 2 (or 4 in some studies) seizures per month, Gabapentin or placebo was then added on to the existing therapy during a 12-week treatment period. Effectiveness was assessed primarily on the basis of the percent of patients with a 50% or greater reduction in ncy from baseline to treatment (the "responder rate") and a derived measure called response ratio, a measure of change defined as $(T \cdot B)/(T + B)$

B), in which B is the patient's baseline seizure frequency and T is the patient's seizure frequency during treatment. Response ratio is distributed within the

range -1 to +1. A zero value indicates no change while complete elimination of seizures would give a value of -1; increased seizure rates would give positive values. A response ratio of -0.33 corresponds to a 50% reduction in seizure frequency. The results given below are for all partial seizures in the intent-totreat (all patients who received any doses of treatment) population in each study, unless otherwise indicated. $One study compared gabapent in 1200\,mg/day, in three divided doses with placebo. Responder rate was 23\% (14/61) in the gabapent in group and 9\% (6/66) in the gabapent in gr$ in the placebo group; the difference between groups was statistically significant. Response ratio was also better in the gabapentin group (-0.199) than in


the placebo group (-0.044), a difference that also achieved statistical significance. A second study compared primarily gabapentin 1200 mg/day, in three divided doses (N = 101), with placebo (N = 98). Additional smaller gabapentin dosage groups (600 mg/day, N = 53; 1800 mg/day, N = 54) were also studied for information regarding dose response. Responder rate was higher in the gabapentin 1200 mg/day group (16%) than in the placebo group (8%), but the difference was not statistically significant. The responder rate at 600 mg (17%) was also To one significantly higher than in the placebo group (5%), but the engineering was also group (5%) was statistically significantly superior to the placebo and the segment of the segment significant (p = 0.224). A better response was seen in the gabapentin 600 mg/day group (-0.105) and 1800 mg/day group (-0.222) than in the 1200 mg/day

A third study compared gabapentin 900 mg/day, in three divided doses (N = 111), and placebo (N = 109). An additional gabapentin 1200 mg/day dosage group (N – 52) provided dose-response data. A statistically significant difference in responder rate was seen in the gabapentin 900 mg/day group (22%) compared to that in the placebo group (10%). Response ratio was also statistically significantly superior in the gabapentin 900 mg/day group (-0.119) $compared \ to \ that \ in \ the \ placebo \ group \ (-0.027), \ as \ was \ response \ ratio \ in \ 1200 \ mg/day \ gabapent \ in \ (-0.184) \ compared \ to \ placebo$ Analyses were also performed in each study to examine the effect of gabapentin on preventing secondarily generalized tonic-clonic seizures. Patients who

experienced a secondarily generalized tonic-clonic seizure in either the baseline or in the treatment period in all three placebo-controlled studies were included in these analyses. There were several response ratio comparisons that showed a statistically significant advantage for gabapentin compared to placebo and favorable trends for almost all comparisons

Analysis of responder rate using combined data from all three studies and all doses (N=162, gabapentin; N=89, placebo) also showed a significant advantage for gabapent in over place bo in reducing the frequency of secondarily generalized to nic-clonic seizures.In two of the three controlled studies, more than one dose of gabapentin was used. Within each study, the results did not show a consistently increased response to dose. However, looking across studies, a trend toward increasing efficacy with increasing dose is evident (see Figure 4).

Figure 4. Responder Rate in Patients Receiving Gabapentin Expressed as a Difference from Placebo by Dose and Study: Adjunctive Therapy ies in Patients ≥12 Years of Age with Partial Seizures

group, with the 1800 mg/day group achieving statistical significance compared to the placebo group.

In the figure, treatment effect magnitude, measured on the Y axis in terms of the difference in the proportion of gabapentin and placebo-assigned patients attaining a 50% or greater reduction in seizure frequency from baseline, is plotted against the daily dose of gabapentin administered (X axis).

Although no formal analysis by gender has been performed, estimates of response (Response Ratio) derived from clinical trials (398 men, 307 women) indicate no important gender differences exist. There was no consistent pattern indicating that age had any effect on the response to gabapentin. There were insufficient numbers of patients of races other than Caucasian to permit a comparison of efficacy among racial groups.

A fourth study in pediatric patients age 3 to 12 years compared 25 to 35 mg/kg/day gabapentin (N = 118) with placebo (N = 127). For all partial seizures in the intent-to-treat population, the response ratio was statistically significantly better for the gabapentin group (-0.146) than for the placebo group (-0.079). For the same population, the responder rate for gabapentin (21%) was not significantly different from placebo (18%). A study in pediatric patients age 1 month to 3 years compared 40 mg/kg/day gabapentin (N=38) with placebo (N=38) in patients who were receiving at least one marketed antiepileptic drug and had at least one partial seizure during the screening period (within 2 weeks prior to baseline). Patients had up to 48 hours of baseline and up to 72 hours of double-blind video EEG monitoring to record and count the occurrence of seizures. There were no statistically

significant differences between treatments in either the response ratio or responder rate 16 HOW SUPPLIED/STORAGE AND HANDLING

250 mg per 5 mL oral solution: Clear colorless to slightly yellow solution; each 5 mL of oral solution contains 250 mg of gabapentin; available in: Bottles containing 470 mL: NDC 31722-069-47

Store gabapentin oral solution refrigerated, 2°C to 8°C (36°F to 46°F). 17 PATIENT COUNSELING INFORMATION

Inform patients that gabapentin oral solution is taken orally with or without food.

Advise the patient to read the FDA-approved patient labeling (Medication Guide). Administration Information

 $\underline{Drug\,Reaction\,with\,Eosinophilia\,and\,Systemic\,Symptoms\,(DRESS)/Multiorgan\,Hypersensitivity}$ Prior to initiation of treatment with gabapentin oral solution, instruct patients that a rash or other signs or symptoms of hypersensitivity (such as fever or lymphadenopathy) may herald a serious medical event and that the patient should report any such occurrence to a physician immediately (see Warnings and Anaphylaxis and Angioedema Advise nations to discontinue galanentin gral solution and seek medical care if they develop signs or symptoms of anaphylaxis or anginedema (see

<u>Dizziness and Somnolence and Effects on Driving and Operating Heavy Machinery</u>

Advise patients that gabapentin oral solution may cause dizziness, somnolence, and other symptoms and signs of CNS depression. Other drugs with sedative properties may increase these symptoms. Accordingly, although patients' ability to determine their level of impairment can be unreliable, advise them neither to drive a car nor to operate other complex machinery until they have gained sufficient experience on gabapentin oral solution to gauge whether or not it affects their mental and/or motor performance adversely. Inform patients that it is not known how long this effect lasts/see Warnings and Precautions (5.3) and Warnings and Precautions (5.4)].

Suicidal Thinking and Behavior Counsel the patient, their caregivers, and families that AEDs, including gabapentin oral solution, may increase the risk of suicidal thoughts and behavior. Advise patients of the need to be alert for the emergence or worsening of symptoms of depression, any unusual changes in mood or behavior, or the emergence of suicidal thoughts, behavior, or thoughts about self-harm. Instruct patients to report behaviors of concern immediately to healthcare providers Respiratory Depression

Inform patients about the risk of respiratory depression. Include information that the risk is greatest for those using concomitant CNS depressants (such as onioid analogsics) or those with underlying respiratory impairment. Teach nations how to recognize respiratory depression and advise them to seek dical attention immediately if it occurs (see Warnings and Precautions (5.7)) Use in Pregnancy

Instruct patients to notify their physician if they become pregnant or intend to become pregnant during therapy, and to notify their physician if they are breast feeding or intend to breast feed during therapy [see Use in Specific Populations (8.1) and (8.2)]. The brands listed are the registered trademarks of their respective owners and are not trademarks of Annora Pharma Private Limited.

CAMBER Manufactured for: Camber Pharmaceuticals, Inc. Piscataway, NJ 08854 By: Annora Pharma Pvt. Ltd. Sangareddy - 502313, Telangana, India.

Revised: 09/2024